O razio A . A ttanasi, ${ }^{\text {a }}$ L ucia De C rescentini, ${ }^{\text {a }}$ E lisabetta F oresti, ${ }^{\text {b }}$ G iuseppe G atti, ${ }^{\text {c }}$ R affaello G iorgi, ${ }^{\mathrm{d}}$ F rancesca R. Perrulli ${ }^{\text {a }}$ and Stefania Santeusanio ${ }^{*, a}$
${ }^{\text {a }}$ I stituto di Chimica Organica della F acoltà di Scienze, U niversità di U rbino, Piazza della R epubblica 13, 61029 U rbino, Italy
${ }^{\text {b }}$ Dipartimento di Chimica 'G. Ciamician', U niversità di B ologna, Via Selmi 2, 40126 B ologna, Italy
${ }^{\text {c }}$ Istituto di Scienze C himiche della F acoltà di Scienze, U niversità di U rbino, Piazza R inascimento 6, 61029 U rbino, Italy
${ }^{d}$ L aboratori Guidotti S.p.A., V ia Livornese 897, 56122 S. Piero a Grado (Pisa) , Italy

Abstract

1-N H-BOC protected 1,2-diaminopyrroles have been converted by one-pot cleavage of the protecting group and subsequent reaction of the compounds obtained with 1,2-dicarbonyl compounds into highly substituted pyrrolo[1,2-b][1,2,4]triazines. Structural assignments to the regioisomers arising from the reaction with phenylglyoxal have been made on the basis of NMR spectral evidence. An X-ray crystal structure analysis of 6-ethoxycarbonyl-7-methyl-3-phenyl-5-piperidin-1-ylcarbonylpyrrolo[1,2-b] [1,2,4]triazine has been carried out in order to confirm unambiguously the structure assignment.

The remarkable utility of 1,2-diazabuta-1,3-dienes (currently named conjugated azoalkenes) as important tools in organic chemistry has been well documentated. ${ }^{1-5}$ In particular, the usefulness of these compounds in the direct synthesis of polyfunctionalized pyrrole, pyrazole and thiazole systems has been highlighted. ${ }^{4,5}$ The presence of different functional groups in many positions of these heterocycles has been especially emphasised since such compounds have, in turn, potential for further interesting structural modifications, making them suitable as intermediates for more complex compounds. M oreover, as we have al ready pointed out, some of these substituents may also be considered as protecting groups of functions profitable from the preparative point of view after proper deprotection. ${ }^{4,6}$

With this background, we decided to investigate the hydrolytic cleavage of some 1,2-diaminopyrroles 1 having a 1-N HBOC protected amino function ${ }^{8}$ followed by reaction of the products obtained with 1,2-dicarbonyl derivatives 2 with the aim of finding a new route to highly substituted molecules such as pyrrolo[1,2-b][1,2,4]triazines $5 .{ }^{3}$ Compounds containing the 1,2,4-triazine ring show biological activity and are found in natural materials; a large number of such synthetic compounds are also used as pharmaceuticals, pesticides and dyes. ${ }^{7}$

Results and discussion

In order to further our aim, we tried initially three different routes: a direct method (path B) and two indirect methods (path A and path C), as shown in Scheme 1. We generally observed either lower or at best comparable yields by the indirect methods compared with the direct method. This behaviour can be ascribed to the loss of material in the manipulations for the isolation of the intermediates $\mathbf{3}$ and $\mathbf{4}$. H ence, in view of the less complicated work-up procedures we considered it more convenient to investigate in detail the one-flask reactions both for the deprotection and condensation steps.

1-BOC protected 1,2-diaminopyrroles 1a-d were allowed to react with 1,2 -dicarbonyl compounds 2 a-e in acidic tetrahydrofuran to afford directly pyrrolo[1,2-b][1,2,4]triazine derivatives 5a-x (see Scheme 1 and Table 1).

4

Scheme 1 Reagents and conditions: i, 35\% A q. HCl (5.7 equiv.), TH F ; ii, $35 \% \mathrm{HCl}$ (cat.), THF

Hydrogen chloride-promoted cleavage of the BOC group and nucleophilic addition to the carbonyl compound gave the fully aromatic fused system by a double condensation process. The reaction of 1-BOC protected 1,2-diaminopyrroles 1a-d with phenylglyoxal monohydrate $\mathbf{2 e}$ represented an exception to the general procedure in that the presence of unsymmetric substituents on the dicarbonyl compound together with the aldehydic function in the hydrate form produced two regioisomeric pyrrolo[1,2-b][1,2,4]triazine derivatives: namely $\mathbf{5 e}$ and $\mathbf{5 f}, \mathbf{5 k}$ and $\mathbf{5 l}, \mathbf{5 q}$ and $\mathbf{5 r}$ and $\mathbf{5 w}$ and $\mathbf{5 x}$. A detailed study of the reaction between the pyrrole derivative 1c and phenylglyoxal

Table 1

1	R^{1}	Starting materials 2	R^{2}	R^{3}	Products 4 and 5	R^{2}	R^{3}	$\begin{aligned} & \text { Y ield (\%) } \\ & \text { Path A } \end{aligned}$	$\begin{aligned} & \text { Y ield (\%) } \\ & \text { Path B } \end{aligned}$	$\begin{aligned} & \text { Y ield (\%) } \\ & \text { Path C } \end{aligned}$
1	$4-\mathrm{NO}_{2} \mathrm{C}_{6} \mathrm{H}_{4}$	2a	H	H	5a	H	H		32	
		2b	M e	Me	5b	M e	Me		72	
		2c			5c				31	
		2d	Ph	Ph	5d	Ph	Ph		60	
		2e	Ph	H	5 e	H	Ph		11	
					5 f	Ph	H		75	
1	CN	2a		H	5 g		H		79	
		2b	M e	Me	5h	M e	M e		77	
		2c			5i				43	
		2d	Ph	Ph	5j	Ph	Ph		86	
		2e	Ph	H	5k	H	Ph		44	
					51		H		22	
1c	CO-Piperidine	2a			5m		H		63	
		2b	Me	Me	5 n	Me	M e		79	
		2c			50				56	
		2d	Ph	Ph	5p	Ph	Ph		88	
		2e	Ph	H	$4 q$	H	Ph			73
					$5 q$	H	Ph	54	38	71
					4 r	Ph	H			6
					5 r	Ph	H	7	28	69
1d	$\mathrm{PO}(\mathrm{OEt})_{2}$	2a	H	H	5s	H	H		35	
		2b	M e	Me	5t	Me	Me		62	
		2c			5u				22	
		2d	Ph	Ph	5v	Ph	Ph		47	
		2e	Ph	H	5w	H	Ph		43	
					5x	Ph	H		8	

Scheme 2 Reagents and conditions: i, 35\% HCl (5.7 equiv.), THF; ii, $35 \% \mathrm{HCl}$ (cat.), THF ; iii, $170^{\circ} \mathrm{C}$; iv, $\mathrm{PhCOCOH} \cdot \mathrm{H}_{2} \mathrm{O}$
monohydrate $\mathbf{2 e}$ has also been examined from the mechanistic standpoint (see Scheme 2).

The indirect route A, proceeding by preliminary acidic cleavage of the BOC group, yielded 1,2-diaminopyrrole 3c which on reaction with the dicarbonyl compound $\mathbf{2 e}$ gave both $5 q$ and $\mathbf{5 r}$ although the latter was in a low yield. The first step suggests nucleophilic attack by the more basic N -amino group at position 1 on the ketonic function followed by attack of the amino group at position 2 of the pyrrolering on the aldehyde function In this way, the intermediates rapidly undergo a double condensation process, leading to the aromatic fused systems $\mathbf{5 q}$ (54%)

Table $2{ }^{1}$ H N M R chemical shifts of the 7-methyl group

		$\delta(\mathrm{ppm})$ 2-Phenyl- regioisomer	$\mathbf{5}$	δ (ppm) 3-Phenyl- regioisomer	D ifference
5-Substituent	$\mathbf{5}$	$\mathbf{5 e}$	2.933	$\mathbf{5 f}$	2.886
4-N itrophenyl	$\mathbf{5 k}$	2.926	$\mathbf{5 l}$	2.879	0.047
Cyano	5q	0.047			
Piperidin-1-ylcarbonyl	$\mathbf{5 q}$	2.879	$\mathbf{5 r}$	2.829	0.050
Diethylphosphono	$\mathbf{5 w}$	2.810	$\mathbf{5 x}$	2.764	0.046

and $\mathbf{5 r}(7 \%)$ (see Table 1). In an acidic medium, the direct route B, gave the two regioisomers $\mathbf{5 q}$ (38%) and $\mathbf{5 r}$ (28\%) in almost comparable yields.
By using a catalytic amount of hydrogen chloride (path C) it was possible to isolate the intermediates 4 and determine that the yield of $\mathbf{4 q}(73 \%)$ exceeded the yield of $\mathbf{4 r}(6 \%)$ (see Table 1). In this case, the first step is a nucleophilic attack by the aromatic amino group on the aldehydic function. The structures of the imino derivatives $4 q$ and $4 r$, were assigned through ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectroscopy. When heated in an oil-bath at $170^{\circ} \mathrm{C}, 4 \mathrm{q}$ and 4 r gave rise to the corresponding pyrrolo[1,2-b][1,2,4]triazine derivatives $\mathbf{5 q}$ (71\%) and $\mathbf{5 r}(69 \%)$ (yields refer to the precursors $\mathbf{4 q}$ and $\mathbf{4 r}$, respectively).

Structure determination

Assignment of structure to the 2-/3-phenyl regioisomers was tentatively made on the basis of the ${ }^{1} \mathrm{H}$ chemical shifts of the 7-methyl group, which are summarised in Table 2 for the various 5 -substituents. The consistent observation of a 0.05 ppm deshielding of this group in one isomer, relative to the other isomer, suggests a proximity of the co-planar phenyl group. In fact, the magnetic anisotropy cone of the phenyl group in position 2 is more deshielding than that in position 3.
In order to check this assignment, the two isomers $\mathbf{5 q}$ and $5 r$ were synthesised by heating at $170^{\circ} \mathrm{C}$ the corresponding precursors $\mathbf{4 q}$ and $\mathbf{4 r}$, respectively, that had been characterised structurally by spectroscopic evidence. The ${ }^{13} \mathrm{C}$ NMR spectrum of compound 4 q showed a signal at $\delta 190.04$, typical for ketonic carbonyl and a signal with DEPT multiplicity of two at $\delta 150.65$ which was assigned to the $\mathrm{N}=\mathrm{CH}$ fragment;

Fig. 1 The X-ray molecular structure of $\mathbf{5 r}$ with the atom numbering system used in the crystallographic analysis
the ${ }^{1} \mathrm{H}$ NMR spectrum showed the NH signal at $\delta 10.51$ as expected for a 1-BOC protected function. M oreover, the IR spectrum showed absorption at $3168 \mathrm{~cm}^{-1}$. In contrast, compound $4 r$ showed in its ${ }^{13} \mathrm{C}$ NMR spectrum a DEPT doublet at $\delta 73.70$ and in its ${ }^{1} \mathrm{H} N M$ R spectrum an $A B$ pattern which are attributed to the CHOH group; its IR spectrum showed a broad OH absorption at $3246 \mathrm{~cm}^{-1}$. M oreover, the signal at $\delta 152.66$ (DEPT singlet) was in agreement with the presence of the $\mathrm{N}=\mathrm{CPh}$ fragment.

A similar procedure was used for the compounds $\mathbf{5 e}$ and $\mathbf{5 f}$, $\mathbf{5 k}$ and $\mathbf{5 l}, \mathbf{5 w}$ and $\mathbf{5 x}$ with various 5 -substituents (see Table 1 and Table 2). For further elucidation of the reaction pathway C, $\mathbf{4 f}, \mathbf{4 k}$ and $\mathbf{4 x}$ were synthesised and their ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ spectra recorded as for $4 q$ and $4 \mathbf{r}$. By heating at $170^{\circ} \mathrm{C}$ they gave the corresponding pyrrolo[1,2-b][1,2,4]triazine derivatives $\mathbf{5 f}$, $\mathbf{5 k}$ and $\mathbf{5 x}$, respectively. As a final check, the structure of $\mathbf{5 r}$ was studied by X-ray diffraction.
The X-ray crystal determination of 6-ethoxycarbonyl-7-methyl-3-phenyl-5-piperidin-1-ylcarbonylpyrrolo[1,2-b][1,2,4]triazine $5 \mathbf{r}$ was in agreement with the conclusions drawn from the ${ }^{1} H$ NMR evidence. The X-ray molecular structure of $5 r$ with the atom numbering system used in crystallographic analysis is shown in Fig. 1.

The molecular drawing clearly reveals the five- and sixmembered fused rings to be a planar system; the maximum deviation from the plane passing through the nine atoms $\mathrm{N}(1)-\mathrm{N}(2)-\mathrm{C}(3)-\mathrm{C}(4)-\mathrm{N}(5)-\mathrm{C}(6)-\mathrm{C}(7)-\mathrm{C}(8)-\mathrm{C}(9)$ being at $C(7)[0.04 \AA]$. M oreover, the phenyl ring is nearly co-planar with the triazine ring. The torsion angles $\mathrm{C}(3)-\mathrm{C}(4)-\mathrm{C}(24)-$ $C(29)$ and $N(5)-C(4)-C(24)-C(25)$ are 12°.

Experimental

Commercially available solvents were used without further purification except for THF, which was distilled from sodium hydroxide. Glyoxal (40 wt\% solution in water) 2a, butane-2,3dione 2b, cyclohexane-1,2-dione $\mathbf{2 c}$, benzil $\mathbf{2 d}$ and phenyIglyoxal hydrate $\mathbf{2 e}$ are commercial materials (A Idrich or Janssen C himica) and were used without further purification. 2-A mino-1-tert-butoxycarbonylamino-3-cyano-4-ethoxycarbonyl-5-methylpyrrole $\mathbf{1 b}$ and 2-amino-1-tert-butoxycarbonylamino-4-ethoxy-carbonyl-5-methyl-3-piperidin-1-ylcarbonylpyrrole 1c were prepared as previously reported. ${ }^{8} \mathrm{New}$ 2-amino-1-tert-butoxycarbonylamino-4-ethoxycarbonyl-5-methyl-3-(4-nitrophenyl)pyrrole 1a and 2-amino-1-tert-butoxycarbonylamino-4-ethoxycarbonyl-3-diethylphosphono-5-methylpyrrole 1d were
synthesised as reported below. M ps were determined in open capillary tubes with a Gallenkamp apparatus and are uncorrected. All yields refer to pure isolated products. All IR spectra were obtained for Nujol mulls and were recorded using a Perkin-Elmer 298 spectrophotometer. M ass spectra were performed with a H ewlett Packard 5995C spectrometer. All ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra were measured using a Bruker AC-200 (200 M Hz) Fourier transform spectrometer equipped with cryomagnet, in CDCl_{3} solution unless otherwise stated. All the spectra were measured at 298 K . Chemical shifts $\left(\delta_{\mathrm{H}}\right)$ are reported in ppm downfield from internal $\mathrm{M}_{4} \mathrm{Si}$ and J values are given in Hz . The abbreviations used are as follows: $s=$ singlet, $\mathrm{d}=$ doublet, $\mathrm{t}=$ triplet, $\mathrm{q}=$ quartet, $\mathrm{m}=$ multiplet, $\mathrm{br}=$ broad and $\mathrm{D}_{2} \mathrm{O}$-exch. $=\mathrm{D}_{2} \mathrm{O}$ exchange. Chemical shifts (δ_{c}) are reported relative to internal deuteriochloroform or $\left.{ }^{2} \mathrm{H}_{6}\right]$ dimethyl sulfoxide as internal standard in a broad band decoupled mode; the multiplicities were obtained by using 135 and 90° DEPT experiments to aid in assignments ($q=$ methyl, $t=$ methylene, $d=$ methyne, $s=$ quaternary). $\quad M$ acherey $-N$ agel pre-coated silica gel SIL G-25U V 254 plates (0.25 mm thick) were employed for analytical thin layer chromatography (TLC) and silica gel Amicon LC $60 \AA(35-70 \mathrm{~mm})$ for column chromatography.

Synthesis of 2-amino-1-tert-butoxycarbonylamino-4-ethoxy-carbonyl-5-methyl-3-(4-nitrophenyl)pyrrole 1a

A solution of 1-tert-butoxycarbonylazoalkene (1 mmol) in ethyl acetate ($5 \mathrm{~cm}^{3}$) was added at $0^{\circ} \mathrm{C}$ to a magnetically stirred solution of 4 -nitrophenylacetonitrile (1 mmol) in ethyl acetate (5 cm^{3}), which had been stirred previously at room temperature for 0.2 h with 1 drop of triethylamine. A fter the azoalkene had disappeared (monitored by TLC, ca. 2 h), ethyl acetate was removed from the mixture by evaporation under reduced pressure to give a residue which was treated with diethyl ether to afford the 1,4-adduct intermediate. The adduct (1 mmol) was refluxed in ethanol in the presence of a catalytic amount of sodium hydride until it had disappeared (monitored by TLC, ca. 1.5 h). The red solution was then concentrated under reduced pressure and the precipitated pyrrole derivative la was filtered off to provide a yellow powder (60%), mp $175-176{ }^{\circ} \mathrm{C}$ (decomp.) (from ethanol); $v_{\text {max }}\left(\mathrm{K} \mathrm{Br}^{2} / \mathrm{cm}^{-1} 3350,3240,1700\right.$, 1660, 1620, 1600, 1510 and 1340; $\delta_{\mathrm{H}} 1.13$ (3H, t, J 7, $\mathrm{CO}_{2} \mathrm{CH}_{2} \mathrm{M} \mathrm{e}$), $1.52\left(9 \mathrm{H}, \mathrm{s}, \mathrm{CO}_{2} \mathrm{Bu}^{\mathrm{t}}\right), 2.42(3 \mathrm{H}, \mathrm{s}, \mathrm{Me}), 3.47(2 \mathrm{H}$, $\mathrm{s}, \mathrm{NH}_{2}, \mathrm{D}_{2} \mathrm{O}$-exch.), 4.13 ($2 \mathrm{H}, \mathrm{q}, \mathrm{J} 7, \mathrm{CO}_{2} \mathrm{CH}_{2} \mathrm{M} \mathrm{e}$), 6.97 (1 H , s , $\mathrm{NH}, \mathrm{D}_{2} \mathrm{O}$-exch.), 7.44 ($2 \mathrm{H}, \mathrm{d}, \mathrm{J} 8.8,4-\mathrm{NO}_{2} \mathrm{Ph}$) and 8.19 ($2 \mathrm{H}, \mathrm{d}$, J 8.8, $4-\mathrm{N} \mathrm{O}_{2} \mathrm{Ph}$) (Found: C, 56.52; H, 6.02; N, 13.78\%; M ${ }^{+}$, 404.90. $\mathrm{C}_{19} \mathrm{H}_{24} \mathrm{~N}_{4} \mathrm{O}_{6}$ requires $\mathrm{C}, 56.43 ; \mathrm{H}, 5.98$; $\mathrm{N}, 13.85 \%$; M , 404.42).

Synthesis of 2-amino-1-tert-butoxycarbonylamino-4-ethoxy-carbonyl-3-diethylphosphono-5-methylpyrrole 1d

To a stirred solution of diethyl cyanomethylphosphonate (1 mmol) in THF ($5 \mathrm{~cm}^{3}$) and a catalytic amount of sodium hydride at $0^{\circ} \mathrm{C}$ was added dropwise 1-tert-butoxycarbonylazoalkene (1 mmol) dissolved in THF ($5 \mathrm{~cm}^{3}$). The mixture was allowed to warm at room temperature with continuance of the stirring until the azoalkene had disappeared (monitored by TLC, ca. 12 h); the reaction mixture was then evaporated under reduced pressure The residue was dissolved in diethyl ether and the solution washed with water, dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$ and evaporated under reduced pressure. The residue was chromatographed on a silica gel column (cyclohexane-ethyl acetate) to give the title compound as a beige oil (48%); $v_{\text {max }}(\mathrm{K} \mathrm{Br}) / \mathrm{cm}^{-1} 3440,3330$, 3150, 1740, 1705 and 1610; $\delta_{\mathrm{H}}\left[\left[^{2} \mathrm{H}_{6}\right]\right.$-DM SO) 1.11-1.32 (9H, $\mathrm{m}, 2 \mathrm{OCH}_{2} \mathrm{Me}$ and $\mathrm{CO}_{2} \mathrm{CH}_{2} \mathrm{Me}$ e, $1.46\left(9 \mathrm{H}, \mathrm{s}, \mathrm{CO}_{2} \mathrm{Bu}^{\mathrm{t}}\right), 2.18$ $(3 \mathrm{H}, \mathrm{s}, \mathrm{M} \mathrm{e}), 3.74-3.93\left(4 \mathrm{H}, \mathrm{m}, 2 \mathrm{OCH}_{2} \mathrm{M} \mathrm{e}\right), 4.11(2 \mathrm{H}, \mathrm{q}, \mathrm{J} 7$, $\mathrm{CO}_{2} \mathrm{CH}_{2} \mathrm{Me}$), $5.91\left(2 \mathrm{H}, \mathrm{s}, \mathrm{NH}_{2}, \mathrm{D}_{2} \mathrm{O}\right.$-exch.) and $9.99(1 \mathrm{H}, \mathrm{s}$, NH, D 2 -exch.) (Found: C, 48.72; H, 7.35; N, 10.12\%; M ${ }^{+}$, 419.6. $\mathrm{C}_{17} \mathrm{H}_{30} \mathrm{~N}_{3} \mathrm{O}_{7} \mathrm{P}$ requires $\mathrm{C}, 48.68 ; \mathrm{H}, 7.21 ; \mathrm{N}, 10.02 \%$; M, 419.41).

Synthesis of 1,2-diamino-4-ethoxycarbonyl-5-methyl-3-piperidin-1-ylcarbonylpyrrole 3c

To a stirred solution of the pyrrole derivative $\mathbf{1 c}(1 \mathrm{mmol})$ in THF $\left(2 \mathrm{~cm}^{3}\right)$ was added at $0^{\circ} \mathrm{C}$ aqueous hydrochloric acid (35% $\mathrm{w} / \mathrm{w} ; 0.5 \mathrm{~cm}^{3}, 5.7$ equiv.). A fter the solution had been allowed to warm at room temperature, stirring was continued until no starting material remained (monitored by TLC, ca. 72 h). The reaction mixture was then evaporated under reduced pressure to afford a solid which was suspended in 2 m aqueous NaOH to yield the deprotected pyrrole derivative $\mathbf{3 c}$. This was collected by suction filtration and then washed with water and dried in vacuo to afford a beige powder, $\mathrm{mp} 175-177^{\circ} \mathrm{C}$ (from ethanol); $v_{\max }(\mathrm{K} \mathrm{Br}) / \mathrm{cm}^{-1} 3440,3320,3200,1725,1670$ and 1640 ; $\delta_{\mathrm{H}}\left(\left[{ }^{2} \mathrm{H}_{6}\right]\right.$-D M SO) $1.21\left(3 \mathrm{H}, \mathrm{t}, \mathrm{J} 7, \mathrm{CO}_{2} \mathrm{CH}_{2} \mathrm{M} \mathrm{e}\right.$), 1.42-1.57 (6 H , $\mathrm{m}, \mathrm{Pip}), 2.35(3 \mathrm{H}, \mathrm{s}, \mathrm{M} \mathrm{e}), 3.37$ ($4 \mathrm{H}, \mathrm{br}$ s, Pip), 4.07 ($2 \mathrm{H}, \mathrm{q}, \mathrm{J} 7$, $\mathrm{CO}_{2} \mathrm{CH}_{2} \mathrm{Me}$), 4.68 ($2 \mathrm{H}, \mathrm{s}, \mathrm{NH}_{2}, \mathrm{D}_{2} \mathrm{O}$-exch.) and $5.38(2 \mathrm{H}, \mathrm{s}$, $\mathrm{NH}_{2}, \mathrm{D}_{2} \mathrm{O}$-exch.) (Found: C, $57.3 ; \mathrm{H}, 7.48 ; \mathrm{N}, 19.12 \% ; \mathrm{M}^{+}$, 294.65. $\mathrm{C}_{14} \mathrm{H}_{22} \mathrm{~N}_{4} \mathrm{O}_{3}$ requires $\mathrm{C}, 57.13 ; \mathrm{H}, 7.53 ; \mathrm{N}, 19.03 \% ; \mathrm{M}$, 294.35).

Typical procedure for the synthesis of compounds 5a-x

To a magnetically stirred solution of each of the pyrrole derivatives $1 \mathrm{a}-\mathrm{d}$ (1 mmol) and the dicarbonyl compounds $2 \mathrm{a}-\mathrm{e}$ (1 mmol) in THF ($4 \mathrm{~cm}^{3}$) was added hydrochloric acid ($35 \% \mathrm{w} / \mathrm{w}$; $0.5 \mathrm{~cm}^{3}, 5.7$ equiv.) at $0^{\circ} \mathrm{C}$; the reaction mixture was then allowed to warm to room temperature for the appropriate reaction time (monitored by TLC ca. 22-72 h). Only 5e-f required an additional time (2 h) under reflux for the completion. A fter the reagents disappeared, THF was removed from the mixture under reduced pressure and the residue was dissolved in dichloromethane and the solution neutralised with sodium hydrogen carbonate, washed with water, dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$ and evaporated under reduced pressure. The derivatives $\mathbf{5 a - x}$ were obtained pure either by column chromatography on silica gel (cyclohexane-ethyl acetate mixtures) or directly by crystallisation from the appropriate solvent (see below).

6-E thoxycarbonyl-7-methyl-5-(4-nitrophenyl)pyrrolo[1,2-b][1,2,4]triazine 5a

Orange powder, mp $176-177^{\circ} \mathrm{C}$ (from dichloromethanemethanol); $v_{\text {max }}(\mathrm{K} \mathrm{Br}) / \mathrm{cm}^{-1} 1710,1605,1505$ and 1350; $\delta_{\mathrm{H}} 1.23$ $\left(3 \mathrm{H}, \mathrm{t}, \mathrm{J} 7, \mathrm{CO}_{2} \mathrm{CH}_{2} \mathrm{M} \mathrm{e}\right.$), 2.86 ($3 \mathrm{H}, \mathrm{s}, \mathrm{Me}$), $4.30(2 \mathrm{H}, \mathrm{q}, \mathrm{J} 7$, $\mathrm{CO}_{2} \mathrm{CH}_{2} \mathrm{Me}$), $7.71\left(2 \mathrm{H}, \mathrm{d}, \mathrm{J} 8.8,4-\mathrm{NO}_{2} \mathrm{C}_{6} \mathrm{H}_{4}\right), 8.01(1 \mathrm{H}, \mathrm{d}, \mathrm{J} 1.5$, $\mathrm{CH}), 8.16(1 \mathrm{H}, \mathrm{d}, \mathrm{J} 1.5, \mathrm{CH})$ and $8.29(2 \mathrm{H}, \mathrm{d}, \mathrm{J} 8.8,4-$ $\mathrm{NO}_{2} \mathrm{C}_{6} \mathrm{H}_{4}$) (Found: C, 58.9; H, 4.3; N, 17.2\%; M ${ }^{+}, 326.65$. $\mathrm{C}_{16} \mathrm{H}_{14} \mathrm{~N}_{4} \mathrm{O}_{4}$ requires C, 58.8; $\mathrm{H}, 4.4 ; \mathrm{N}, 17.1 \% ; \mathrm{M}, 326.31$).

6-E thoxycarbonyl-2,3,7-trimethyl-5-(4-nitrophenyl)pyrrolo-[1,2-b][1,2,4]triazine 5b

Orange crystals, $\mathrm{mp} 198-199^{\circ} \mathrm{C}$ [from tetrahydrofuran-diethyl ether-light petroleum (bp $40-60^{\circ} \mathrm{C}$)]; $v_{\text {max }}(\mathrm{K} \mathrm{Br}) / \mathrm{cm}^{-1} 1700$, 1595, 1505 and $1340 ; \delta_{\mathrm{H}} 1.23\left(3 \mathrm{H}, \mathrm{t}, \mathrm{J} 7, \mathrm{CO}_{2} \mathrm{CH}_{2} \mathrm{M} \mathrm{e}\right.$), $2.50(3 \mathrm{H}$, s, Me), $2.52(3 \mathrm{H}, \mathrm{s}, \mathrm{Me}$), 2.79 ($3 \mathrm{H}, \mathrm{s}, \mathrm{Me}$), 4.28 ($2 \mathrm{H}, \mathrm{q}, \mathrm{J} 7$, $\mathrm{CO}_{2} \mathrm{CH}_{2} \mathrm{Me}$), $7.71\left(2 \mathrm{H}, \mathrm{d}, \mathrm{J} 8.8,4-\mathrm{NO}_{2} \mathrm{C}_{6} \mathrm{H}_{4}\right)$ and $8.25(2 \mathrm{H}, \mathrm{d}, \mathrm{J}$ 8.8, 4- $\mathrm{N} \mathrm{O}_{2} \mathrm{C}_{6} \mathrm{H}_{4}$) (Found: C, 61.1; H, 5.1; N, 15.8\%; M ${ }^{+}$, 354.30. $\mathrm{C}_{18} \mathrm{H}_{18} \mathrm{~N}_{4} \mathrm{O}_{4}$ requires C, 61.2; H , 5.1; N , 15.7\%; M , 354.36).

6-E thoxycarbonyl-7-methyl-5-(4-nitrophenyl)-1,2,3,4-tetrahydro-

 benzo[e]pyrrolo[1,2-b][1,2,4]triazine 5cBrownish crystals, mp $179-180^{\circ} \mathrm{C}$ (from dichloromethanemethanol); $v_{\text {max }}(\mathrm{K} \mathrm{Br}) / \mathrm{cm}^{-1} 1700,1590,1500$ and 1330; $\delta_{\mathrm{H}} 1.24$ ($3 \mathrm{H}, \mathrm{t}, \mathrm{J} 7, \mathrm{CO}_{2} \mathrm{CH}_{2} \mathrm{Me}$), 1.91-1.98 (4H , m, cyclic CH_{2}), 2.79 ($3 \mathrm{H}, \mathrm{s}, \mathrm{M} \mathrm{e}$), 2.90-2.97 ($4 \mathrm{H}, \mathrm{m}$, cyclic CH_{2}), $4.29(2 \mathrm{H}, \mathrm{q}, \mathrm{J} 7$, $\left.\mathrm{CO}_{2} \mathrm{CH}_{2} \mathrm{M} \mathrm{e}\right), 7.70\left(2 \mathrm{H}, \mathrm{d}, \mathrm{J}, 8.8,4-\mathrm{N}_{2} \mathrm{C}_{6} \mathrm{H}_{4}\right)$ and $8.25(2 \mathrm{H}, \mathrm{d}, \mathrm{J}$ 8.8, 4- $\mathrm{N} \mathrm{O}_{2} \mathrm{C}_{6} \mathrm{H}_{4}$) (Found: C, 63.2; H, 5.2; N, 14.8\%; M ${ }^{+}, 380.00$. $\mathrm{C}_{20} \mathrm{H}_{20} \mathrm{~N}_{4} \mathrm{O}_{4}$ requires $\mathrm{C}, 63.2 ; \mathrm{H}, 5.3 ; \mathrm{N}, 14.7 \% ; \mathrm{M}, 380.40$).

6-E thoxycarbonyl-7-methyl-5-(4-nitrophenyl)-2,3-diphenyl-pyrrolo[1,2-b][1,2,4]triazine 5d
Red crystals, mp 188-189 ${ }^{\circ} \mathrm{C}$ (from tetrahydrofuran-diethyl
ether); $v_{\text {max }}(\mathrm{K} \mathrm{Br}) / \mathrm{cm}^{-1} 1710,1590,1510$ and 1330; $\delta_{\mathrm{H}} 1.28$ $\left(3 \mathrm{H}, \mathrm{t}, \mathrm{J} 7, \mathrm{CO}_{2} \mathrm{CH}_{2} \mathrm{M} \mathrm{e}\right.$), $2.90(3 \mathrm{H}, \mathrm{s}, \mathrm{Me}$), $4.34(2 \mathrm{H}, \mathrm{q}, \mathrm{J} 7$, $\mathrm{CO}_{2} \mathrm{CH}_{2} \mathrm{M} \mathrm{e}$), $7.23-7.46$ ($10 \mathrm{H}, \mathrm{m}, 2 \mathrm{Ar}$), 7.83 ($2 \mathrm{H}, \mathrm{d}, \mathrm{J} 8.8,4-$ $\mathrm{NO}_{2} \mathrm{C}_{6} \mathrm{H}_{4}$) and $8.28\left(2 \mathrm{H}, \mathrm{d}, \mathrm{J} 8.8,4-\mathrm{N} \mathrm{O}_{2} \mathrm{C}_{6} \mathrm{H}_{4}\right)$ (Found: C, 70.3; $\mathrm{H}, 4.5 ; \mathrm{N}, 11.7 \% ; \mathrm{M}^{+}, 479.05 . \mathrm{C}_{28} \mathrm{H}_{22} \mathrm{~N}_{4} \mathrm{O}_{4}$ requires $\mathrm{C}, 70.3 ; \mathrm{H}$, 4.6; N, 11.7\%; M , 478.50).

6-E thox ycarbonyl-7-methyl-5-(4-nitrophenyl)-2-phenylpyrrolo-[1,2-b][1,2,4]triazine 5e

Orange crystals, mp $215-218^{\circ} \mathrm{C}$ [from chloroform-light petroleum (bp $\left.40-60^{\circ} \mathrm{C}\right)$]; $v_{\text {max }}(\mathrm{K} \mathrm{Br}) / \mathrm{cm}^{-1} 1680,1595,1505$ and 1340 ; $\delta_{\mathrm{H}} 1.25\left(3 \mathrm{H}, \mathrm{t}, \mathrm{J} 7, \mathrm{CO}_{2} \mathrm{CH}_{2} \mathrm{Me}\right.$), $2.92(3 \mathrm{H}, \mathrm{s}, \mathrm{M} \mathrm{e}), 4.31(2 \mathrm{H}, \mathrm{q}$, J $\left.7, \mathrm{CO}_{2} \mathrm{CH}_{2} \mathrm{M} \mathrm{e}\right), 7.55-7.60(3 \mathrm{H}, \mathrm{m}, \mathrm{Ar}), 7.75(2 \mathrm{H}, \mathrm{d}, \mathrm{J} 8.8$, $\left.4-\mathrm{NO}_{2} \mathrm{C}_{6} \mathrm{H}_{4}\right), 8.00-8.05(2 \mathrm{H}, \mathrm{m}, \mathrm{Ar}), 8.30(2 \mathrm{H}, \mathrm{d}, \mathrm{J} 8.8,4-$ $\mathrm{NO}_{2} \mathrm{C}_{6} \mathrm{H}_{4}$) and $8.49(1 \mathrm{H}, \mathrm{s}, \mathrm{CH}) ; \delta_{\mathrm{c}} 10.72(\mathrm{q}), 14.79(\mathrm{q}), 61.50$ (t), 113.34 (s), 116.84 (s), 123.62 (d), 127.58 (d), 129.14 (s), 130.01 (d), 131.60 (d), 132.12 (d), 133.85 (s), 136.68 (d), 140.55 (s), 147.22 (s), 147.51 (s), 153.11 (s) and 165.62 (s) (Found: C, 65.5; H, 4.5; N, 14.3\%; M ${ }^{+}$, 402.90. $\mathrm{C}_{22} \mathrm{H}_{18} \mathrm{~N}_{4} \mathrm{O}_{4}$ requires C, 65.6; H , 4.5; N, 14.1\%; M , 402.41).

6-E thox ycarbonyl-7-methyl-5-(4-nitrophenyl)-3-phenylpyrrolo-[1,2-b][1,2,4]triazine 5 f

Red crystals, mp $213-215^{\circ} \mathrm{C}$ (from chloroform); $v_{\text {max }}(\mathrm{K} \mathrm{Br}) /$ $\mathrm{cm}^{-1} 1680,1595,1510$ and $1345 ; \delta_{\mathrm{H}} 1.27(3 \mathrm{H}, \mathrm{t}, \mathrm{J} 7$, $\mathrm{CO}_{2} \mathrm{CH}_{2} \mathrm{Me}$), $2.88(3 \mathrm{H}, \mathrm{s}, \mathrm{Me}), 4.33\left(2 \mathrm{H}, \mathrm{q}, \mathrm{J} 7, \mathrm{CO}_{2} \mathrm{CH}_{2} \mathrm{Me}\right.$), 7.49-7.55 (3H, m, Ar), $7.81\left(2 \mathrm{H}, \mathrm{d}, \mathrm{J} 8.8,4-\mathrm{N} \mathrm{O}_{2} \mathrm{C}_{6} \mathrm{H}_{4}\right), 8.00-$ $8.06(2 \mathrm{H}, \mathrm{m}, \mathrm{Ar}), 8.30\left(2 \mathrm{H}, \mathrm{d}, \mathrm{J} 8.8,4-\mathrm{NO}_{2} \mathrm{C}_{6} \mathrm{H}_{4}\right)$ and $8.70(1 \mathrm{H}$, $\mathrm{s}, \mathrm{CH}) ; \delta_{\mathrm{c}} 10.73(\mathrm{q}), 14.80(\mathrm{q}), 61.53(\mathrm{t}), 112.81$ (s), 117.09 (s$)$, 123.53 (d), 127.08 (d), 128.81 (s), 129.94 (d), 131.32 (d), 132.08 (d), 135.43 (s), 137.76 (d), 140.59 (s), 143.83 (s), 147.01 (s), 153.60 (s) and 165.72 (s) (Found: C, 65.8; H , 4.4; N, 13.7\%; M ${ }^{+}$, 402.70. $\mathrm{C}_{22} \mathrm{H}_{18} \mathrm{~N}_{4} \mathrm{O}_{4}$ requires $\mathrm{C}, 65.6 ; \mathrm{H}, 4.5 ; \mathrm{N}, 13.9 \% ; \mathrm{M}$, 402.41).

5-C yano-6-ethox ycarbonyl-7-methylpyrrolo[1,2-b][1,2,4]triazine

 5 gYellow powder, mp $128-129^{\circ} \mathrm{C}$ (from methanol); $v_{\max }(\mathrm{K} \mathrm{Br})$ / $\mathrm{cm}^{-1} 2210$ and $1720 ; \delta_{\mathrm{H}} 1.47\left(3 \mathrm{H}, \mathrm{t}, \mathrm{J} 7, \mathrm{CO}_{2} \mathrm{CH}_{2} \mathrm{Me}\right.$ e), $2.86(3 \mathrm{H}$, s, Me), $4.47\left(2 \mathrm{H}, \mathrm{q}, \mathrm{J} 7, \mathrm{CO}_{2} \mathrm{CH} 2 \mathrm{Me}\right.$), $8.29(1 \mathrm{H}, \mathrm{d}, \mathrm{J} 1.7, \mathrm{CH})$ and 8.32 ($1 \mathrm{H}, \mathrm{d}, \mathrm{J} 1.7, \mathrm{CH}$) (Found: C, 57.56; H, 4.41; N, $24.12 \% ; \mathrm{M}^{+}, 230.85 . \mathrm{C}_{11} \mathrm{H}_{10} \mathrm{~N}_{4} \mathrm{O}_{2}$ requires C , $57.39 ; \mathrm{H}, 4.38$; N, 24.34\%; M , 230.23).

5-C yano-6-ethox ycarbonyl-2,3,7-trimethylpyrrolo[1,2-b][1,2,4]-

 triazine 5 hYellow crystals, mp $139-141^{\circ} \mathrm{C}$ (from tetrahydrofuran-diethyl ether); $v_{\text {max }}(\mathrm{K} \mathrm{Br}) / \mathrm{cm}^{-1} 2210$ and 1710; $\delta_{\mathrm{H}} 1.48(3 \mathrm{H}, \mathrm{t}, \mathrm{J} 7$, $\mathrm{CO}_{2} \mathrm{CH}_{2} \mathrm{Me}$), $2.58(3 \mathrm{H}, \mathrm{s}, \mathrm{Me}$), $2.62(3 \mathrm{H}, \mathrm{s}, \mathrm{Me}$), $2.79(3 \mathrm{H}, \mathrm{s}$, Me) and $4.44\left(2 \mathrm{H}, \mathrm{q}, \mathrm{J} 7, \mathrm{CO}_{2} \mathrm{CH}_{2} \mathrm{M}\right.$ e) (Found: $\mathrm{C}, 60.4 ; \mathrm{H}, 5.3$; $\mathrm{N}, 21.6 \% ; \mathrm{M}^{+}, 258.00 . \mathrm{C}_{13} \mathrm{H}_{14} \mathrm{~N}_{4} \mathrm{O}_{2}$ requires C, 60.45; $\mathrm{H}, 5.5$; N, 21.7\%; M , 258.28).

5-C yano-6-ethox ycarbonyl-7-methyl-1,2,3,4-tetrahydrobenzo[e]-pyrrolo[1,2-b][1,2,4]triazine 5i
Brownish crystals, $\mathrm{mp} 156-157^{\circ} \mathrm{C}$ (from tetrahydrofurandiethyl ether); $v_{\max }(\mathrm{K} \mathrm{Br}) / \mathrm{cm}^{-1} 2210$ and $1710 ; \delta_{\mathrm{H}} 1.46(3 \mathrm{H}, \mathrm{t}$, J 7, $\mathrm{CO}_{2} \mathrm{CH}_{2} \mathrm{Me}$), 1.95-2.01 (4H, m, cyclic CH_{2}), 2.78 (3H, s, Me), 3.00-3.05 ($4 \mathrm{H}, \mathrm{m}$, cyclic CH_{2}) and $4.44(2 \mathrm{H}, \mathrm{q}$, J 7 , $\mathrm{CO}_{2} \mathrm{CH}_{2} \mathrm{M} \mathrm{e)} \mathrm{(Found:} \mathrm{C}, \mathrm{63.4;} \mathrm{H,5.6;} \mathrm{N}, \mathrm{19.8} \mathrm{\% ;} \mathrm{M}{ }^{+}$, 284.10. $\mathrm{C}_{15} \mathrm{H}_{16} \mathrm{~N}_{4} \mathrm{O}_{2}$ requires C, 63.4; H , 5.7; N, 19.7\%; M , 284.32).

5-C yano-6-ethox ycarbonyl-7-methyl-2,3-diphenylpyrrolo[1,2-b][1,2,4]triazine 5j

Orange crystals, mp $183-184.5^{\circ} \mathrm{C}$ (from tetrahydrofuran); $v_{\text {max }}(\mathrm{K} \mathrm{Br}) / \mathrm{cm}^{-1} 2210,1710$ and $1595 ; \delta_{\mathrm{H}} 1.48(3 \mathrm{H}, \mathrm{t}, \mathrm{J} 7$, $\mathrm{CO}_{2} \mathrm{CH}_{2} \mathrm{Me}$), $2.89\left(3 \mathrm{H}, \mathrm{s}, \mathrm{Me}\right.$), $4.47\left(2 \mathrm{H}, \mathrm{q}, \mathrm{J} 7, \mathrm{CO}_{2} \mathrm{CH}_{2} \mathrm{M} \mathrm{e)}\right.$ and 7.30-7.49 (10H , m, 2 Ar) (Found: C, 72.2; H , 4.7; N, 14.7\%; M^{+}, 382.00. $\mathrm{C}_{23} \mathrm{H}_{18} \mathrm{~N}_{4} \mathrm{O}_{2}$ requires C, 72.2; H , 4.7; N, 14.65\%; M , 382.42).

5-C yano-6-ethox ycarbonyl-7-methyl-2-phenylpyrrolo[1,2-b]-

 [1,2,4]triazine 5kYellow powder, mp $212-213.5^{\circ} \mathrm{C}$ (from tetrahydrofuran); $v_{\text {max }}(\mathrm{K} \mathrm{Br}) / \mathrm{cm}^{-1} 2210$ and $1700 ; \delta_{\mathrm{H}} 1.49\left(3 \mathrm{H}, \mathrm{t}, \mathrm{J} 7, \mathrm{CO}_{2} \mathrm{CH}_{2} \mathrm{Me}\right.$ e), 2.92 ($3 \mathrm{H}, \mathrm{s}, \mathrm{Me}$), $4.48\left(2 \mathrm{H}, \mathrm{q}, \mathrm{J} 7, \mathrm{CO}_{2} \mathrm{CH}_{2} \mathrm{M} \mathrm{e}\right.$), 7.54-7.72 (3H, $\mathrm{m}, \mathrm{Ar}), 7.97-8.12(2 \mathrm{H}, \mathrm{m}, \mathrm{Ar})$ and $8.76(1 \mathrm{H}, \mathrm{s}, \mathrm{CH}) ; \delta_{\mathrm{c}} 10.36$ (q), 14.80 (q), 62.21 (t), 84.80 (s), 114.00 (s), 118.79 (s), 127.77 (d), 130.20 (d), 130.83 (s), 132.19 (d), 132.88 (s), 137.53 (s), 140.10 (d), 148.45 (s) and 163.47 (s) (Found: C, 66.7; H, 4.7; $\mathrm{N}, 18.3 \% ; \mathrm{M}^{+}, 307.00 . \mathrm{C}_{17} \mathrm{H}_{14} \mathrm{~N}_{4} \mathrm{O}_{2}$ requires C, 66.7; H, 4.6; N, 18.3\%; M , 306.32).

5-C yano-6-ethox ycarbonyl-7-methyl-3-phenylpyrrolo[1,2-b][1,2,4]triazine 5I

Orange powder, mp $247-249^{\circ} \mathrm{C}$ (from tetrahydrofuran); $v_{\text {max }}(\mathrm{K} \mathrm{Br}) / \mathrm{cm}^{-1} 2210$ and $1700 ; \delta_{\mathrm{H}} 1.49\left(3 \mathrm{H}, \mathrm{t}, \mathrm{J} 7, \mathrm{CO}_{2}{ }^{-}\right.$ $\mathrm{CH}_{2} \mathrm{M} \mathrm{e}$), $2.87\left(3 \mathrm{H}, \mathrm{s}, \mathrm{Me}\right.$), $4.48\left(2 \mathrm{H}, \mathrm{q}, \mathrm{J} 7, \mathrm{CO}_{2} \mathrm{CH} 2 \mathrm{Me}\right.$), $7.56-$ $7.59(3 \mathrm{H}, \mathrm{m}, \mathrm{Ar}), 8.17-8.22(2 \mathrm{H}, \mathrm{m}, \mathrm{Ar})$ and $8.83(1 \mathrm{H}, \mathrm{s}, \mathrm{CH})$; $\delta_{\mathrm{c}} 10.41(\mathrm{q}), 14.86(\mathrm{q}), 62.19(\mathrm{t}), 84.11(\mathrm{~s}), 114.34(\mathrm{~s}), 118.73(\mathrm{~s})$, 127.86 (d), 130.11 (d), 130.43 (s), 132.08 (s), 132.54 (d), 134.36 (s), 138.46 (d), 147.15 (s) and 163.58 (s) (Found: C, 66.6; H , 4.7; $\mathrm{N}, 18.5 \% ; \mathrm{M}^{+}, 307.00 . \mathrm{C}_{17} \mathrm{H}_{14} \mathrm{~N}_{4} \mathrm{O}_{2}$ requires $\mathrm{C}, 66.7 ; \mathrm{H}, 4.6$; N , 18.3\%; M , 306.32).

6-E thoxycarbonyl-7-methyl-5-piperidin-1-ylcarbonylpyrrolo-[1,2-b][1,2,4]triazine 5m

Yellow powder, $\mathrm{mp} 121-122^{\circ} \mathrm{C}$ (from tetrahydrofuran-diethyl ether); $v_{\text {max }}(\mathrm{K} \mathrm{Br}) / \mathrm{cm}^{-1} 1710$ and $1625 ; \delta_{\mathrm{H}} 1.37(3 \mathrm{H}, \mathrm{t}, \mathrm{J} 7$, $\mathrm{CO}_{2} \mathrm{CH}_{2} \mathrm{M} \mathrm{e}$), 1.48-1.70 ($6 \mathrm{H}, \mathrm{m}, \mathrm{Pip}$), $2.80(3 \mathrm{H}, \mathrm{s}, \mathrm{Me}$), 3.243.29 ($2 \mathrm{H}, \mathrm{m}, \mathrm{Pip}$), 3.81-3.86 (2H, m, Pip), 4.35 ($2 \mathrm{H}, \mathrm{q}, \mathrm{J} 7$, $\left.\mathrm{CO}_{2} \mathrm{CH}_{2} \mathrm{M} \mathrm{e}\right), 7.97(1 \mathrm{H}, \mathrm{d}, \mathrm{J} 1.7, \mathrm{CH})$ and $8.08(1 \mathrm{H}, \mathrm{d}, \mathrm{J} 1.7$, CH) (Found: C, 60.85; H, 6.4; N, 17.7\%; M ${ }^{+}$, 316.10. $\mathrm{C}_{16} \mathrm{H}_{20} \mathrm{~N}_{4} \mathrm{O}_{3}$ requires $\left.\mathrm{C}, 60.75 ; \mathrm{H}, 6.4 ; \mathrm{N}, 17.7 \% ; \mathrm{M}, 316.36\right)$.

6-E thoxycarbonyl-2,3,7-trimethyl-5-piperidin-1-ylcarbonyl-pyrrolo[1,2-b][1,2,4]triazine 5n

Yellow-orange crystals, $\mathrm{mp} \quad 159-161^{\circ} \mathrm{C}$ [from dichloro-methane-light petroleum (bp $\left.40-60^{\circ} \mathrm{C}\right)$]; $v_{\max }(\mathrm{K} \mathrm{Br}) / \mathrm{cm}^{-1} 1715$ and 1640; $\delta_{\mathrm{H}} 1.37\left(3 \mathrm{H}, \mathrm{t}, \mathrm{J} 7, \mathrm{CO}_{2} \mathrm{CH}_{2} \mathrm{Me}\right.$ e, $1.46-1.69(6 \mathrm{H}, \mathrm{m}$, Pip), 2.48 ($6 \mathrm{H}, \mathrm{s}, 2 \mathrm{M} \mathrm{e}$), 2.76 ($3 \mathrm{H}, \mathrm{s}, \mathrm{M} \mathrm{e}$), 3.24-3.29 (2 H , m, Pip), 3.81-3.86 ($2 \mathrm{H}, \mathrm{m}, \mathrm{Pip}$) and $4.34\left(2 \mathrm{H}, \mathrm{q}, \mathrm{J} 7, \mathrm{CO}_{2} \mathrm{CH}_{2} \mathrm{Me}\right.$) (Found: C, 62.9; H, 7.1; N, 16.2\%; M ${ }^{+}$, 344.75. $\mathrm{C}_{18} \mathrm{H}_{24} \mathrm{~N}_{4} \mathrm{O}_{3}$ requires $\mathrm{C}, 62.8 ; \mathrm{H}, 7.0 ; \mathrm{N}, 16.3 \% ; \mathrm{M}, 344.41)$.

6-E thoxycarbonyl-7-methyl-5-piperidin-1-ylcarbonyl-1,2,3,4-tetrahydrobenzo[e]pyrrolo[1,2-b][1,2,4]triazine 50
Yellow-orange crystals, $\mathrm{mp} 166-167^{\circ} \mathrm{C}$ [dichloromethane-light petroleum (bp $40-60^{\circ} \mathrm{C}$)]; $v_{\text {max }}(\mathrm{K} \mathrm{Br}) / \mathrm{cm}^{-1} 1700$ and $1635 ; \delta_{\mathrm{H}}$ 1.37 ($3 \mathrm{H}, \mathrm{t}, \mathrm{J} 7, \mathrm{CO}_{2} \mathrm{CH}_{2} \mathrm{M} \mathrm{e}$), 1.46-1.69 (6H, m, Pip), 1.89-1.96 ($4 \mathrm{H}, \mathrm{m}$, cyclic CH_{2}), $2.75(3 \mathrm{H}, \mathrm{s}, \mathrm{Me}$), 2.89-2.93 (4 H , m, cyclic CH_{2}), 3.23-3.28 (2H, m, Pip), 3.80-3.85 (2H , m, Pip) and 4.34 ($2 \mathrm{H}, \mathrm{q}, \mathrm{J} 7, \mathrm{CO}_{2} \mathrm{CH}_{2} \mathrm{M} \mathrm{e}$) (Found: $\mathrm{C}, 64.75 ; \mathrm{H}, 7.1 ; \mathrm{N}, 15.2 \%$; $\mathrm{M}^{+}, 370.85 . \mathrm{C}_{20} \mathrm{H}_{26} \mathrm{~N}_{4} \mathrm{O}_{3}$ requires C, $64.85 ; \mathrm{H}, 7.1 ; \mathrm{N}, 15.1 \%$; M , 370.45).

6-E thoxycarbonyl-7-methyl-2,3-diphenyl-5-piperidin-1-yIcarb-onylpyrrolo[1,2-b][1,2,4]triazine 5p
Yellow powder, mp $205-208^{\circ} \mathrm{C}$ (from tetrahydrofuran); $v_{\max }(\mathrm{K} \mathrm{Br}) / \mathrm{cm}^{-1} 1715$ and $1630 ; \delta_{\mathrm{H}} 1.39(3 \mathrm{H}, \mathrm{t}, \mathrm{J}$, $\mathrm{CO}_{2} \mathrm{CH}_{2} \mathrm{M} \mathrm{e}$), 1.43-1.67 (6H , m, Pip), 2.86 ($3 \mathrm{H}, \mathrm{s}, \mathrm{Me}$), 3.33$3.38(2 \mathrm{H}, \mathrm{m}, \mathrm{Pip}), 3.81-3.85(2 \mathrm{H}, \mathrm{m}, \mathrm{Pip}), 4.38(2 \mathrm{H}, \mathrm{q}, \mathrm{J} 7$, $\mathrm{CO}_{2} \mathrm{CH}_{2} \mathrm{Me}$) and 7.25-7.42 ($10 \mathrm{H}, \mathrm{m}, 2 \mathrm{Ar}$) (Found: C, 71.7; $\mathrm{H}, 6.1 ; \mathrm{N}, 11.8 \% ; \mathrm{M}^{+}, 468.40 . \mathrm{C}_{28} \mathrm{H}_{28} \mathrm{~N}_{4} \mathrm{O}_{3}$ requires $\mathrm{C}, 71.8$; H, 6.02; N, 12.0\%; M , 468.55).

6-E thoxycarbonyl-7-methyl-2-phenyl-5-piperidin-1-ylcarbonyl-pyrrolo[1,2-b][1,2,4]triazine 5q
Yellow-orange crystals, $\mathrm{mp} 171-173^{\circ} \mathrm{C}$ (from tetrahydrofuran); $v_{\text {max }}(\mathrm{K} \mathrm{Br}) / \mathrm{cm}^{-1} 1700,1625$ and $1600 ; \delta_{\mathrm{H}} 1.39(3 \mathrm{H}, \mathrm{t}, \mathrm{J} 7$, $\mathrm{CO}_{2} \mathrm{CH}_{2} \mathrm{M} \mathrm{e}$), $1.50-1.70(6 \mathrm{H}, \mathrm{m}, \mathrm{Pip}), 2.88(3 \mathrm{H}, \mathrm{s}, \mathrm{Me}$), $3.27-$
$3.33(2 \mathrm{H}, \mathrm{m}, \mathrm{Pip}), 3.83-3.87(2 \mathrm{H}, \mathrm{m}, \mathrm{Pip}), 4.37(2 \mathrm{H}, \mathrm{q}, \mathrm{J} 7$, $\mathrm{CO}_{2} \mathrm{CH}_{2} \mathrm{M} \mathrm{e}$), 7.54-7.57 (3H, m, A r), 7.97-8.02 (2H , m, A r) and 8.47 (1H , s, CH); $\delta_{\mathrm{c}} 10.33$ (q), $14.99(\mathrm{q}), 25.34(\mathrm{t}), 26.13(\mathrm{t})$, 26.93 (t$), 43.40$ (t$), 48.94(\mathrm{t}), 61.33(\mathrm{t}), 110.82(\mathrm{~s}), 115.91(\mathrm{~s})$, 127.49 (d), 128.55 (s), 129.65 (s), 129.88 (d), 131.38 (d), 133.90 (s), 136.32 (d), $147.01(\mathrm{~s}), 164.30(\mathrm{~s})$ and 164.82 (s) (Found: C, 67.2; H, 6.1; N, 14.2\%; M ${ }^{+}$, 392.30. $\mathrm{C}_{22} \mathrm{H}_{24} \mathrm{~N}_{4} \mathrm{O}_{3}$ requires C, 67.3; H , 6.2; N, 14.3\%; M , 392.46).

6-E thox ycarbonyl-7-methyl-3-phenyl-5-piperidin-1-ylcarbonyl-pyrrolo[1,2-b][1,2,4]triazine 5r
Red-orange crystals, mp $171-172{ }^{\circ} \mathrm{C}$ (from tetrahydrofuran); $v_{\text {max }}(\mathrm{K} \mathrm{Br}) / \mathrm{cm}^{-1} 1705,1620$ and 1595; $\delta_{\mathrm{H}} 1.39(3 \mathrm{H}, \mathrm{t}, \mathrm{J} 7$, $\mathrm{CO}_{2} \mathrm{CH}_{2} \mathrm{M} \mathrm{e}$), 1.42-1.72 ($6 \mathrm{H}, \mathrm{m}, \mathrm{Pip}$), 2.84 ($3 \mathrm{H}, \mathrm{s}, \mathrm{M} \mathrm{e}$), 3.30$3.35(2 \mathrm{H}, \mathrm{m}, \mathrm{Pip}), 3.84-3.88(2 \mathrm{H}, \mathrm{m}, \mathrm{Pip}), 4.37(2 \mathrm{H}, \mathrm{q}, \mathrm{J} 7$, $\mathrm{CO}_{2} \mathrm{CH}_{2} \mathrm{M} \mathrm{e}$), 7.49-7.51 (3H, m, A r), 8.04-8.07 (2H , m, A r) and 8.63 (1H , s, CH); $\delta_{\mathrm{c}} 10.39$ (q), $15.00(\mathrm{q}), 25.43(\mathrm{t}), 26.36(\mathrm{t})$, 27.08 (t), 43.45 (t$), 49.05$ (t), 61.32 (t), 110.48 (s$), 116.22(\mathrm{~s})$, 127.08 (d), 128.15 (s), 129.68 (d), 129.85 (s), 131.04 (d), 135.39 (s), 137.36 (d), 143.31 (s), 164.40 (s) and 164.85 (s) (Found: C, 67.3; H, 6.1; $N, 14.2 \% ; M^{+}, 392.30 . \mathrm{C}_{22} \mathrm{H}_{24} \mathrm{~N}_{4} \mathrm{O}_{3}$ requires C , 67.3; H , 6.2; N , 14.3\%; M , 392.46).

6-E thox ycarbonyl-5-diethylphosphono-7-methylpyrrolo[1,2-b][1,2,4]triazine 5s

Dark-orange oil; $v_{\text {max }}(\mathrm{K} \mathrm{Br}) / \mathrm{cm}^{-1} 1720$ and 1030; $\delta_{\mathrm{H}} 1.20-1.48$ ($9 \mathrm{H}, \mathrm{m}, 2 \mathrm{OCH}_{2} \mathrm{Me}$ and $\mathrm{CO}_{2} \mathrm{CH}_{2} \mathrm{Me}$ e), $2.74(3 \mathrm{H}, \mathrm{s}, \mathrm{Me}$), 4.16$4.26\left(4 \mathrm{H}, \mathrm{m}, 2 \mathrm{OCH}_{2} \mathrm{M} \mathrm{e}\right.$), $4.44\left(2 \mathrm{H}, \mathrm{q}, \mathrm{J} 7, \mathrm{CO}_{2} \mathrm{CH}_{2} \mathrm{M} \mathrm{e}\right.$), 8.25 ($1 \mathrm{H}, \mathrm{d}, \mathrm{J} 1.7, \mathrm{CH}$) and 8.27 ($1 \mathrm{H}, \mathrm{d}, \mathrm{J}$ 1.7, CH) (Found: C, 49.4; $\mathrm{H}, 6.0 ; \mathrm{N}, 12.3 \% ; \mathrm{M}^{+}, 341.35 . \mathrm{C}_{14} \mathrm{H}_{20} \mathrm{~N}_{3} \mathrm{O}_{5} \mathrm{P}$ requires C , 49.3; H, 5.9; N, 12.3\%; M , 341.30).

6-E thox ycarbonyl-5-diethyIphosphono-2,3,7-trimethyIpyrrolo-[1,2-b][1,2,4]triazine 5t

Yellow crystals, $\mathrm{mp} 94-95^{\circ} \mathrm{C}$ [from dichloromethane-light petroleum (bp $40-60^{\circ} \mathrm{C}$)]; $v_{\text {max }}(\mathrm{K} \mathrm{Br}) / \mathrm{cm}^{-1} 1700$ and $1015 ; \delta_{\mathrm{H}}$ 1.31-1.46 (9H, m, $2 \mathrm{OCH}_{2} \mathrm{Me}$ and $\mathrm{CO}_{2} \mathrm{CH}_{2} \mathrm{Me}$), $2.52(3 \mathrm{H}$, s, $\mathrm{Me}), 2.57$ ($3 \mathrm{H}, \mathrm{s}, \mathrm{Me}$), 2.68 ($3 \mathrm{H}, \mathrm{s}, \mathrm{Me}$), 4.11-4.29 ($4 \mathrm{H}, \mathrm{m}, 2$ $\mathrm{OCH}_{2} \mathrm{Me}$) and $4.40\left(2 \mathrm{H}, \mathrm{q}, \mathrm{J} 7, \mathrm{CO}_{2} \mathrm{CH}_{2} \mathrm{Me}\right.$ e) (Found: $\mathrm{C}, 52.5$; $\mathrm{H}, 6.45 ; \mathrm{N}, 11.3 \% ; \mathrm{M}^{+}, 369.45 . \mathrm{C}_{16} \mathrm{H}_{24} \mathrm{~N}_{3} \mathrm{O}_{5} \mathrm{P}$ requires $\mathrm{C}, 52.0$; H, 6.55; N, 11.4\%; M , 369.36).

6-E thox ycarbonyl-5-diethylphosphono-7-methyl-1,2,3,4-tetra-hydrobenzo[e]pyrrolo[1,2-b][1,2,4]triazine $5 u$

Dark-orange oil; $v_{\text {max }}(\mathrm{K} \mathrm{Br}) / \mathrm{cm}^{-1} 1720$ and 1020; $\delta_{\mathrm{H}} 1.25-1.47$ ($9 \mathrm{H}, \mathrm{m}, 2 \mathrm{OCH}_{2} \mathrm{Me}$ and $\mathrm{CO}_{2} \mathrm{CH}_{2} \mathrm{M} \mathrm{e}$), 1.92-1.99 (4H , m, cyclic $\left.\mathrm{CH}_{2}\right), 2.69\left(3 \mathrm{H}, \mathrm{s}, \mathrm{Me}\right.$), 2.92-3.02 ($4 \mathrm{H}, \mathrm{m}, 2 \mathrm{OCH}_{2} \mathrm{Me}$) and 4.45 ($2 \mathrm{H}, \mathrm{q}, \mathrm{J} 7, \mathrm{CO}_{2} \mathrm{CH}_{2} \mathrm{M} \mathrm{e}$) (Found: C, 54.7; H , 6.7; N , 10.8\%; M ${ }^{+}$, 395.45. $\mathrm{C}_{18} \mathrm{H}_{26} \mathrm{~N}_{3} \mathrm{O}_{5} \mathrm{P}$ requires $\mathrm{C}, 54.7 ; \mathrm{H}, 6.6 ; \mathrm{N}, 10.6 \% ; \mathrm{M}$, 395.39).

6-E thox ycarbonyl-5-diethylphosphono-7-methyl-2,3-diphenyl-pyrrolo[1,2-b][1,2,4]triazine 5v

Dark-yellow crystals, $\mathrm{mp} 119-120^{\circ} \mathrm{C}$ (from diethyl ether); $v_{\text {max }}(\mathrm{K} \mathrm{Br}) / \mathrm{cm}^{-1} 1700$ and $1020 ; \delta_{\mathrm{H}} 1.35\left(6 \mathrm{H}, \mathrm{t}, \mathrm{J} 7,20 \mathrm{CH}_{2} \mathrm{Me}\right.$), $1.47\left(3 \mathrm{H}, \mathrm{t}, \mathrm{J} 7, \mathrm{CO}_{2} \mathrm{CH}_{2} \mathrm{Me}\right.$), $2.81(3 \mathrm{H}, \mathrm{s}, \mathrm{M} \mathrm{e}$), $4.20-4.35$ ($4 \mathrm{H}, \mathrm{m}, 2 \mathrm{OCH}_{2} \mathrm{Me}$ e), $4.46\left(2 \mathrm{H}, \mathrm{q}, \mathrm{J} 7, \mathrm{CO}_{2} \mathrm{CH}_{2} \mathrm{Me}\right.$ e) and $7.28-$ 7.47 (10H, m, 2 Ar) (Found: C, 63.2; H, 5.7; N, 8.6\%; M ${ }^{+}$, 493.65. $\mathrm{C}_{26} \mathrm{H}_{28} \mathrm{~N}_{3} \mathrm{O}_{5} \mathrm{P}$ requires $\mathrm{C}, 63.3 ; \mathrm{H}, 5.7 ; \mathrm{N}, 8.5 \% ; \mathrm{M}$, 493.49).

6-E thox ycarbonyl-5-diethylphosphono-7-methyl-2-phenyl-pyrrolo[1,2-b][1,2,4]triazine 5w

Yellow crystals, mp $105-107^{\circ} \mathrm{C}$ (from diethyl ether-pentane); $v_{\text {max }}(\mathrm{K} \mathrm{Br}) / \mathrm{cm}^{-1} 1710$ and $1030 ; \delta_{\mathrm{H}}$ 1.37-1.49 (9H, m, 2 $\mathrm{OCH}_{2} \mathrm{M}$ e and $\mathrm{CO}_{2} \mathrm{CH}_{2} \mathrm{M} \mathrm{e}$), $2.81(3 \mathrm{H}, \mathrm{s}, \mathrm{Me}), 4.14-4.34(4 \mathrm{H}, \mathrm{m}$, $2 \mathrm{OCH}_{2} \mathrm{Me}$), $4.45\left(2 \mathrm{H}, \mathrm{q}, \mathrm{J} 7, \mathrm{CO}_{2} \mathrm{CH}_{2} \mathrm{Me}\right.$ e), $7.53-7.60(3 \mathrm{H}, \mathrm{m}$, $\mathrm{Ar})$, 8.00-8.04 ($2 \mathrm{H}, \mathrm{m}, \mathrm{Ar}$) and $8.76(1 \mathrm{H}, \mathrm{s}, \mathrm{CH})$; $\delta_{\mathrm{c}} 10.36(\mathrm{q})$, 14.80 (q), 16.94 (q), 17.08 (q), 61.99 ($t), 62.80$ (t), 62.88 (t), 96.35 (s), 122.37 (s, J cp 8.7), 127.57 (d), 129.49 (s, J cp 10.0),
130.00 (d), 131.64 (d), 133.49 (s), 136.58 (s, J cp 17.0), 138.77 (d), 147.03 (s) and 165.08 (s) (Found: C, 57.6; H , 5.9; N, 10.1\%; M ${ }^{+}$, 417.45. $\mathrm{C}_{20} \mathrm{H}_{24} \mathrm{~N}_{3} \mathrm{O}_{5} \mathrm{P}$ requires $\mathrm{C}, 57.55 ; \mathrm{H}, 5.8 ; \mathrm{N}, 10.1 \% ; \mathrm{M}$, 417.40).

6-E thoxycarbonyl-5-diethylphosphono-7-methyl-3-phenyl-pyrrolo[1,2-b][1,2,4]triazine 5x

Yellow oil; $v_{\text {max }}(\mathrm{K} \mathrm{Br}) / \mathrm{cm}^{-1} 1730$ and 1040; $\delta_{\mathrm{H}} 1.35-1.49(9 \mathrm{H}, \mathrm{m}$, $2 \mathrm{OCH}_{2} \mathrm{M} \mathrm{e}$ and $\mathrm{CO}_{2} \mathrm{CH}_{2} \mathrm{Me}$), $2.77(3 \mathrm{H}, \mathrm{s}, \mathrm{M} \mathrm{e}$), $4.20-4.34$ (4 H , $\mathrm{m}, 2 \mathrm{OCH}_{2} \mathrm{Me}$), $4.45\left(2 \mathrm{H}, \mathrm{q}, \mathrm{J} 7, \mathrm{CO}_{2} \mathrm{CH}_{2} \mathrm{M} \mathrm{e}\right.$), 7.51-7.56 (3H $\mathrm{m}, \mathrm{Ar}), 8.10-8.15(2 \mathrm{H}, \mathrm{m}, \mathrm{Ar})$ and $8.75(\mathrm{H}, \mathrm{s}, \mathrm{CH}) ; \delta_{\mathrm{c}} 10.47$ (q), 14.92 (q), 17.09 (q), 17.23 (q), 62.11 ($t), 62.97$ (t), 63.09 (t), 96.03 (s), 122.63 (s) J ср 8.7), 127.66 (d), 129.36 ($\mathrm{s}, \mathrm{J}_{\mathrm{cp}} 10.0$), 129.94 (d), 131.65 (s), 131.73 (d), 135.43 (s, J cp 17.0), 137.30 (d) 145.82 (s) and 165.20 (s) (Found: C, 57.6; H, 5.8; N, 10.15\%; $\mathrm{M}^{+}, 417.45 . \mathrm{C}_{20} \mathrm{H}_{24} \mathrm{~N}_{3} \mathrm{O}_{5} \mathrm{P}$ requires $\mathrm{C}, 57.55 ; \mathrm{H}, 5.8 ; \mathrm{N}, 10.1 \%$; $M, 417.40$).

Path C

The pyrrole derivative $\mathbf{1 c}$ (1 mmol) and phenylglyoxal monohydrate (1 mmol) $\mathbf{2 e}$ were dissolved in THF ($5 \mathrm{~cm}^{3}$) and a catalytic amount of hydrochloric acid ($35 \% \mathrm{w} / \mathrm{w}$) was added to the solution. The reaction was complete in ca. 48 h , after which time evaporation of the reaction mixture under reduced pressure gave crude compound $\mathbf{4 q}$; this was recrystallised from diethyl ether and the pure product filtered off. The motherliquor was purified on a silica gel column (cyclohexane-ethyl acetate mixtures) to yield $\mathbf{4 r}$ and further $\mathbf{4 q}$. The imino derivatives $\mathbf{4 q}$ and $\mathbf{4 r}(1 \mathrm{mmol})$ were warmed in an oil-bath at $170^{\circ} \mathrm{C}$ (ca. 0.5 h) and after work-up gave a dark residue which was purified by flash chromatography (cyclohexane-ethyl acetate) to afford compounds $\mathbf{5 q}$ and $\mathbf{5 r}$.

C ompound 4f

Yellow-orange powder, mp 213-215 ${ }^{\circ} \mathrm{C}$ [from diethyl etherlight petroleum ($\mathrm{bp} 40-60^{\circ} \mathrm{C}$)]; $v_{\max }(\mathrm{K} \mathrm{Br}) / \mathrm{cm}^{-1} 3373,1750$, 1673, 1598, 1468, 1373 and 1341; $\delta_{\mathrm{H}}\left(\left[{ }^{2} \mathrm{H}_{6}\right]\right.$-D M SO) 1.14 (3H, t, J $7, \mathrm{CO}_{2} \mathrm{CH}_{2} \mathrm{M} \mathrm{e}$), $1.38\left(9 \mathrm{H}, \mathrm{s}, \mathrm{CO}_{2} \mathrm{Bu} \mathrm{u}^{\mathrm{t}}\right.$), $2.47(3 \mathrm{H}, \mathrm{s}, \mathrm{Me}$), 4.16 ($2 \mathrm{H}, \mathrm{q}, \mathrm{J} 7, \mathrm{CO}_{2} \mathrm{CH}_{2} \mathrm{M} \mathrm{e}$), 6.59 ($1 \mathrm{H}, \mathrm{d}, \mathrm{J} 6.4, \mathrm{CH}$), 7.52-7.56 ($3 \mathrm{H}, \mathrm{m}, \mathrm{Ar}$), 7.68 ($1 \mathrm{H}, \mathrm{d}, \mathrm{J} 6.4, \mathrm{OH}, \mathrm{D}_{2} \mathrm{O}$-exch.), 7.73 ($2 \mathrm{H}, \mathrm{d}$, J 8.8, 4-N $\mathrm{O}_{2} \mathrm{C}_{6} \mathrm{H}_{4}$), 7.91-7.97 (2H, m, Ar) and 8.26 ($2 \mathrm{H}, \mathrm{d}, \mathrm{J}$ 8.8, 4- $\mathrm{N} \mathrm{O}_{2} \mathrm{C}_{6} \mathrm{H}_{4}$); $\delta_{\mathrm{c}}\left(\left[{ }^{[2} \mathrm{H}_{6}\right]\right.$-D M SO) 10.85 (q), 13.94 (q), 27.37 (q), 59.54 (t), 73.43 (d), 84.87 (s), 107.94 (s), 114.90 (s), 122.38 (d), 126.39 (d), 129.11 (d), 129.25 (s), 131.36 (d), 131.53 (d), 134.42 (s), 135.40 (s), 140.17 (s), 145.59 (s), 152.47 (s), 157.41 (s) and 163.90 (s) (Found: C, 62.5; H,5.2; N, 10.9. $\mathrm{C}_{27} \mathrm{H}_{28} \mathrm{~N}_{4} \mathrm{O}_{7}$ requires $\mathrm{C}, 62.3 ; \mathrm{H}, 5.4 ; \mathrm{N}, 10.8 \%)$.

C ompound 4 k

Yellow powder, mp $131-135^{\circ} \mathrm{C}$ (decomp.) [from diethyl etherlight petroleum ($\mathrm{bp} 40-60^{\circ} \mathrm{C}$)]; $v_{\text {max }}(\mathrm{K} \mathrm{Br}) / \mathrm{cm}^{-1} 3246,2231$, 1765, 1697, 1655 and 1603; $\delta_{\mathrm{H}}\left(\left[^{2} \mathrm{H}_{6}\right]\right.$-D M SO) 1.28-1.35 (12H , $\mathrm{m}, \mathrm{CO}_{2} \mathrm{CH}_{2} \mathrm{M}$ e and $\mathrm{CO}_{2} \mathrm{Bu}^{\mathrm{t}}$), $2.42(3 \mathrm{H}, \mathrm{s}, \mathrm{M} \mathrm{e}), 4.30(2 \mathrm{H}, \mathrm{q}, \mathrm{J} 7$, $\mathrm{CO}_{2} \mathrm{CH}_{2} \mathrm{M} \mathrm{e}$), $7.52-7.77(3 \mathrm{H}, \mathrm{m}, \mathrm{Ar}), 8.15(2 \mathrm{H}, \mathrm{d}, \mathrm{J} 7.3, \mathrm{Ar})$, 8.85 ($1 \mathrm{H}, \mathrm{s}, \mathrm{CH}$) and 10.79 ($1 \mathrm{H}, \mathrm{s}, \mathrm{NH}, \mathrm{D}_{2} \mathrm{O}$-exch.); $\delta_{\mathrm{c}}\left({ }^{2} \mathrm{H}_{6}\right]$ DM SO) 10.42 (q), 13.97 (q), 27.57 (q), 60.52 (t), $81.60(\mathrm{~s})$, 114.35 (s), 126.36 (s), 127.98 (s), 128.50 (d), 130.15 (d), 133.78 (d), 134.51 (s), 139.82 (s), 141.58 (s), 154.00 (s), 156.94 (d), 164.11 (s) and 189.92 (s) (Found: C, 62.3; H, 5.9; N, 13.1. $\mathrm{C}_{22} \mathrm{H}_{24} \mathrm{~N}_{4} \mathrm{O}_{5}$ requires $\mathrm{C}, 62.25 ; \mathrm{H}, 5.7 ; \mathrm{N}, 13.2 \%$).

Compound $4 q$

Yellow-orange crystals, mp $162-166^{\circ} \mathrm{C}$ (decomp.) [from diethyl ether-light petroleum (bp $40-60^{\circ} \mathrm{C}$)]; $v_{\max }(\mathrm{K} \mathrm{Br}) / \mathrm{cm}^{-1}$ $3168,1744,1709,1640,1615$ and 1593; $\delta_{\mathrm{H}}\left(\left[{ }^{2} \mathrm{H}_{6}\right]\right.$-D M SO $)$ 1.151.33 ($18 \mathrm{H}, \mathrm{m}, \mathrm{CO}_{2} \mathrm{CH}_{2} \mathrm{M} \mathrm{e}, \mathrm{CO}_{2} \mathrm{Bu}^{\mathrm{t}}$ and Pip), 2.41 ($3 \mathrm{H}, \mathrm{s}, \mathrm{M} \mathrm{e}$), 3.07-3.96 (4H, m, Pip), 4.13-4.20 ($2 \mathrm{H}, \mathrm{m}, \mathrm{CO}_{2} \mathrm{CH}_{2} \mathrm{M} \mathrm{e}$), 7.497.73 ($3 \mathrm{H}, \mathrm{m}, \mathrm{Ar}$), 8.11-8.17 (3H, m, CH and Ar) and 10.51 ($1 \mathrm{H}, \mathrm{s}, \mathrm{NH}, \mathrm{D}_{2} \mathrm{O}$-exch.); $\delta_{\mathrm{c}}\left(\left[{ }^{2} \mathrm{H}_{6}\right]\right.$-D M SO) 10.48 (q), 14.12 (q), $23.93(\mathrm{t}), 24.80(\mathrm{t}), 25.84(\mathrm{t}), 27.60(\mathrm{q}), 41.55(\mathrm{t}), 46.89(\mathrm{t})$,
59.77 (t$), 81.02$ (s), 108.05 (s), 110.94 (s), 128.30 (d), 130.15 (d), 130.61 (s), 133.21 (d), 134.94 (s), 139.70 (s), 150.65 (d), 154.26 (s), 162.83 (s), 163.09 (s) and 190.04 (s) (Found: C, 63.3; $\mathrm{H}, 6.9 ; \mathrm{N}, 10.8 . \mathrm{C}_{27} \mathrm{H}_{34} \mathrm{~N}_{4} \mathrm{O}_{6}$ requires $\mathrm{C}, 63.5 ; \mathrm{H}, 6.7$; N , 10.9\%).

Compound 4r

Yellow powder, mp 159-161 ${ }^{\circ} \mathrm{C}$ (decomp.) (from diethyl ether); $v_{\max }(\mathrm{K} \mathrm{Br}) / \mathrm{cm}^{-1} 3246,1755,1698,1609$ and 1577; $\delta_{\mathrm{H}}\left(\left[{ }^{2} \mathrm{H}_{6}\right]-\right.$ DM SO) $1.23\left(3 \mathrm{H}, \mathrm{t}, \mathrm{J} 7, \mathrm{CO}_{2} \mathrm{CH}_{2} \mathrm{Me}\right.$), $1.34\left(11 \mathrm{H}, \mathrm{s}, \mathrm{CO}_{2} \mathrm{Bu} \mathrm{u}^{\mathrm{t}}\right.$ and Pip), $1.57(4 \mathrm{H}, \mathrm{m}, \mathrm{Pip}), 2.42(3 \mathrm{H}, \mathrm{s}, \mathrm{M} \mathrm{e}), 3.13-3.26(2 \mathrm{H}, \mathrm{m}$, Pip), 3.49-3.69 (2H, m, Pip), 4.16 ($2 \mathrm{H}, \mathrm{q}, \mathrm{J} 7, \mathrm{CO}_{2} \mathrm{CH}_{2} \mathrm{Me}$), 6.52 ($1 \mathrm{H}, \mathrm{d}, \mathrm{J} 6.4, \mathrm{CH}$), 7.53-7.55 (3H, m, Ar), $7.69(1 \mathrm{H}, \mathrm{d}$, J 6.4, OH, $\mathrm{D}_{2} \mathrm{O}$-exch.) and 7.88-7.94 (2H, m, Ar); $\delta_{\mathrm{c}}\left(\left[{ }^{2} \mathrm{H}_{6}\right]-\right.$ DM SO) 10.41 (q), 14.20 (q), 24.19 (t$), 25.32$ (t), 25.75 (t), 27.40 (q), 41.87 (t), 47.41 (t), 59.49 (t), 73.70 (d), 84.79 (s), 107.42 (s), 112.80 (s), 126.26 (d), 127.30 (s), 129.15 (d), 131.32 (d), 134.55 (s), 152.66 (s), 156.65 (s), 162.86 (s) and 163.41 (s) (Found: C, 63.4; H, 6.8; $\mathrm{N}, 10.9 . \mathrm{C}_{27} \mathrm{H}_{34} \mathrm{~N}_{4} \mathrm{O}_{6}$ requires $\mathrm{C}, 63.5 ; \mathrm{H}, 6.7 ; \mathrm{N}$, 10.9\%).

Compound 4x

Yellow powder, mp 154-155 ${ }^{\circ} \mathrm{C}$ (decomp.) (from diethyl ether); $v_{\max }(\mathrm{K} \mathrm{Br}) / \mathrm{cm}^{-1} 3067,1748,1704$ and $1560 ; \delta_{\mathrm{H}}\left({ }^{2} \mathrm{H}_{6}\right]$-D M SO) 1.18-1.29 ($9 \mathrm{H}, \mathrm{m}, \mathrm{CO}_{2} \mathrm{CH}_{2} \mathrm{M} \mathrm{e}$ and $2 \mathrm{OCH}_{2} \mathrm{Me}$), $1.35(9 \mathrm{H}$, s, $\mathrm{CO}_{2} \mathrm{Bu}^{\mathrm{t}}$), $2.36(3 \mathrm{H}, \mathrm{s}, \mathrm{M} \mathrm{e}), 3.90-4.04\left(4 \mathrm{H}, \mathrm{m}, 2 \mathrm{OCH}_{2} \mathrm{M} \mathrm{e}\right), 4.22$ ($2 \mathrm{H}, \mathrm{q}, \mathrm{J} 7, \mathrm{CO}_{2} \mathrm{CH}_{2} \mathrm{M} \mathrm{e}$), $6.54(1 \mathrm{H}, \mathrm{q}, \mathrm{J} 6.4, \mathrm{CH}$), $7.58-7.61$ ($3 \mathrm{H}, \mathrm{m}, \mathrm{Ar}$), 7.71 ($1 \mathrm{H}, \mathrm{d}, \mathrm{J} 6.4, \mathrm{OH}, \mathrm{D}_{2} \mathrm{O}$-exch.) and 7.99-8.04 $(2 \mathrm{H}, \mathrm{m}, \mathrm{Ar}) ; \delta_{\mathrm{c}}\left({ }^{2} \mathrm{H}_{6}\right]$-D M SO) 10.33 (q), $14.03(\mathrm{q}), 16.11(\mathrm{q})$, 16.25 (q), 27.37 (q), 59.89 (t$), 61.19$ (t, J cp 2.9), 61.30 ($\mathrm{t}, \mathrm{J}_{\text {cp }} 2.9$), 72.88 (d), 85.04 (s), 98.78 (s), 112.50 (s, J ср 8.7), 126.68 (d), 129.13 (d), 131.85 (d), 134.19 (s, J cp 14.4), 134.56 (s), 134.57 (s, J cp 23.1), 152.26 (s), 159.43 (s) and 163.53 (s) (Found: C, 56.3; $\mathrm{H}, 6.6 ; \mathrm{N}, 7.7 \% \mathrm{C}_{25} \mathrm{H}_{34} \mathrm{~N}_{3} \mathrm{O}_{8} \mathrm{P}$ requires C, 56.1; H, 6.4; N , 7.85\%).

C rystal structure of 6-ethox ycarbonyl-7-methyl-2-phenyl-5-piperidin-1-ylcarbonylpyrrolo[1,2-b][1,2,4]triazine 5 r

Prismatic orange crystals suitable for X-ray analysis were prepared by recrystallisation from warm tetrahydrofuran.
C rystal data. $\mathrm{C}_{22} \mathrm{H}_{24} \mathrm{~N}_{4} \mathrm{O}_{3}, M=392.45$, triclinic, space group $\mathrm{P} \overline{1}, \mathrm{a}=8.011(3), \quad \mathrm{b}=9.099(3), c=14.468(4) \AA, \quad a=94.81(5)$, $\beta=105.70(5), \gamma=86.99(4)^{\circ}, U=1011(1) \AA^{3}, Z=2, D_{c}=1.29 \mathrm{Mg}$ $\mathrm{m}^{-3}, \mathrm{~F}(000)=416, \lambda=0.71069 \AA, \mathrm{~T}=298 \mathrm{~K}, \mu(\mathrm{M} \mathrm{o}-\mathrm{K} \alpha)=$ $0.088 \mathrm{~mm}^{-1}$, crystal dimensions $0.80 \times 0.50 \times 0.15 \mathrm{~mm}$. A total of 3710 reflections were collected (3556 unique, $\mathrm{R}_{\text {int }}=0.0091$).

D ata collection and processing. Intensity data were collected on an Enraf-N onius CAD-4 diffractometer using graphite monochromated $\mathrm{Mo}-\mathrm{K} \alpha$ radiation, $\omega / 2 \theta$ scan mode, range $2.25^{\circ}<\theta<24.99^{\circ}$. The unit-cell parameters were determined by least-squares refinement on diffractometer angles for 25 automatically centred reflections $7.4^{\circ}<\theta<12.8^{\circ}$.

Structure analysis and refinement. The structure was solved by direct method and refined by full-matrix least-squares on F^{2}, using the SHELX program packages. ${ }^{9,10}$ In the final refinement cycles 2659 reflections having $\mathrm{I}>2 \sigma(\mathrm{I})$ were used, with 270 parameters varied. The weighting scheme used in the last refinement cycle was $w=1 /\left[\sigma^{2}\left(F^{\circ}{ }^{2}\right)+(0.1076 P)^{2}+0.3257 P\right.$] where $P=\left(F_{0}{ }^{2}+2 F_{c}{ }^{2}\right) / 3$.

Since the ethyl ester group vibrates in a particular way, O(12), $C(13)$ and C (14) were assigned as a rigid body having two positions which on a refinement had occupancy factors of 0.78 and 0.22 , respectively. Obviously, the temperature factors of these three atoms, plus the O (15) are much larger than the rest of the molecule. The hydrogen atoms were located by geometrical calculation and refined using a 'riding' model. Thefinal agreement indices were $R_{1}=0.0595$ and $w R_{2}=0.1603$. G oodness of fit on $F^{2}=1.016$. Largest difference peak and hole was 0.346 and $-0.506 \mathrm{e} \mathrm{A}^{-3}$. Full crystallographic results for this X -ray determination have been deposited with the Cambridge

Crystallographic Data Centre.t A ny request for this material should be accompanied by a full bibliographic citation for the paper together with the reference number CCDC 207/113.
\dagger For details of the Scheme, see Instructions for Authors (1997), J. C hem. Soc., Perkin Trans. 1, 1997, Issue 1.

Acknowledgements

This investigation was supported by the financial assistance of the Università di Urbino, the Consiglio N azionale delle Ricerche (CNR-Roma) and the M inistero dell'Università e della R icerca Scientifica e Tecnologica (M U R ST-Roma).

R eferences

1 J. G. Schantl, in H ouben-W eyl, eds. H. K ropf and E. Schaumann, Thieme, Stuttgart, 4th edn., 1990, vol. E15, p. 909; J. G. Schantl, Farmaco, 1995, 50, 379, and the references cited therein.
2 O. A. A ttanasi and L. Cagglioti, Org. Prep. Proced. Int., 1986, 18, 299, and the references cited therein.
3 G. Cirrincione, A. M. A Imerico, E. A iello and G. Dattolo, P yrroles Part 2: The Synthesis, Reactivity and Physical Properties of Substituted Pyrroles, ch. 3, A minopyrroles, p. 299, ed. R. A. Jones, in the series The C hemistry of H eterocyclic Compounds, John Wiley \& Sons, N ew York, 1992; G. P. Bean, Pyrroles Part 1: The Synthesis and the P hysical and C hemical A spects of the P yrrole R ing, ch. 2 , The Synthesis of 1H-Pyrroles, p. 107, ed. R. A. Jones, in the series The Chemistry of Heterocyclic Compounds, John Wiley \& Sons, New York, 1990; A. G ossauer, Die C hemie der P yrrole, Springer-Verlag, Berlin, 1974, and the references cited therein.
4 O. A. Attanasi, P. Filippone and F. Serra-Zanetti, in Trends in H eterocyclic Chemistry, ed. J. M enon, 1993, vol. 3, p. 461; O. A. Attanasi, P. Filippone and F. Serra-Zanetti, in Progress in H eterocyclic Chemistry, eds. H. Suschitzky and E. F. V. Scriven,

Pergamon, Oxford, 1995, vol. 7, ch. 1, p. 1; O. A. A ttanasi and P. Filippone, in Topics in H eterocyclic Systems-Synthesis, Reactions and Properties, eds. O. A. A ttanasi and D. Spinelli, 1996, vol. 1, p. 157.

5 O. A. A ttanasi and P. Filippone, Synlett, in press, and the references cited therein.
6 F. W. M cOmie, Protective Groups in Organic Chemistry, Plenum, London, 1973; T. W. Green, P. G. M. Wuts, Protective Groups in Organic Synthesis, John Wiley \& Sons, Inc., New York, 1991; P. J. K ocienski, P rotecting Groups, George Thieme Verlag, Stuttgart, 1994.

7 J. G. Erickson, Chem. H eterocycl. Compd., 1956, 10, 44; R. L. Jones and J. R. Kershaw, Rev. Pure Appl. Chem., 1971, 21, 23; H. N eunhoeffer and P. F. Wiley, Chem. H eterocycl. Compd., 1978, 33, 189; J. P. H orwitz, in H eterocyclic Compounds, ed. R. C. Elderfield, John Wiley \& Sons, Inc., N ew York, 1961, vol. 7, p. 1; H. Neunhoeffer, 1,2,4 Triazines and Benzo Derivatives, ed. A. J. Boulton, vol. 6, ch. 14, in the series Comprehensive Heterocyclic C hemistry II, eds. A. R. K atritzky, C. W. Rees and E. F. V. Scriven, Pergamon-Elsevier Science, A msterdam, 1996; E. S. H. El A shry, N. Rashed, M. Taha and E. R amadan, A dv. H eterocycl. Chem., 1994, 59, 39.
8 O. A. Attanasi, S. Santeusanio, F. Serra-Zanetti, E. Foresti and A. M CK illop, J. Chem. Soc., Perkin Trans. 1, 1990, 1669; O. A . A ttanasi, L. De Crescentini, S. Santeusanio, F. Serra-Zanetti, A. M cK illop and Z. Liao, J. Chem. Soc., Perkin Trans. 1, 1992, 1009; O. A . A ttanasi, Z. Liao, A. M cK illop, S. Santeusanio and F. SerraZanetti, J. C hem. Soc., Perkin Trans. 1, 1993, 315; O. A . A ttanasi, P. Filippone, D. Giovagnoli and A. M ei, Synthesis, 1994, 181.

9 G. M. Sheldrick, SH ELX S-86, A cta C rystallogr., Sect. A, 1990, 46, 467.

10 G. M. Sheldrick, SHELXL-93, a computer program for crystal structure determination, U niversity of G öttingen, G ermany, 1993.

Paper 7/00355B
Received 14th J anuary 1997
A ccepted 17th M arch 1997

